>
Return to Directory

Molecular Mechanisms and Dynamics of Plant-Microbe Interactions at the Root-Soil Interface: InRoot Research project

Sederoff, Heike

Collaborator(s):
Manuel Kleiner
Description:

One of the grand challenges facing humanity is to secure sufficient and healthy food for the increasing world population. This requires maintaining sustainable cultivation of crop plants under changing climate conditions. Plant roots and soil microbes have been associated since the emergence of plants on land. Nevertheless, the mechanisms that coevolved to control and regulate microbiota associations with healthy plants are largely unexplored. The photosynthetically active green leaf tissues supply assimilated carbon to roots for development and also to feed its associated microbes. To maintain balanced growth, plants have to integrate this underground demand and regulate the rate of photosynthetic CO2 fixation, and sugar allocation needs to be coordinated between root and shoot. Research on plants and their naturally associated microorganisms is therefore in a prime position to provide new perspectives and concepts for understanding plant function, plant performance and plant growth under limited input conditions with a reduced environmental footprint and could also define breeding targets and develop microbial interventions. InRoot aims to: 1. Disentangle the effects of climate and soil type from the impact of root-microbe interactions through transplantation experiments and exploit natural variation to identify the plant genetic components responsible for adaptation to the local microbiota. 2. Identify key bacterial taxa governing the establishment of host-driven microbial networks in the rhizosphere by analysing the microbe-microbe and microbe-host interactions established in tailored synthetic communities (SynComs) with direct consequences on host performance. 3. Define the plant genetic components that control infection of plant roots by ubiquitous and host-specific endophytes using advanced genetic screens and new methods for quantifying root cellular responses to microbes 4. Understand molecular mechanisms integrating root-microbe interactions into whole-plant physiology by investigating systemic physiological responses induced by SynComs using whole plant phenotyping. 5. Predict plant performance as a function of plant and microbiota genotypes by building multiscale models based on genotype, phenotype, and mechanistic data thereby providing knowledge for application. InRoot perspective: Provide knowledge and tools for science-based development of new crop varieties and associated microbial interventions that will improve productivity, reduce the need for fertilizers and pesticides, and alleviate negative environmental impact.


Region(s)/Country(s): Denmark
Dates:
09/01/2019 - 08/31/2025

Institutional Partner(s):
Aarhus University (AU), Denmark


Faculty Profile Login